241 research outputs found

    Spin and orbital effects in a 2D electron gas in a random magnetic field

    Full text link
    Using the method of superbosonization we consider a model of a random magnetic field (RMF) acting on both orbital motion and spin of electrons in two dimensions. The method is based on exact integration over one particle degrees of freedom and reduction of the problem to a functional integral over supermatrices Q(r,r′)Q({\bf r},{\bf r^{\prime}}). We consider a general case when both the direction of the RMF and the g-factor of the Zeeman splitting are arbitrary. Integrating out fast variations of QQ we come to a standard collisional unitary non-linear σ\sigma-model. The collision term consists of orbital, spin and effective spin-orbital parts. For a particular problem of a fixed direction of RMF, we show that additional soft excitations identified with spin modes should appear. Considering δ\delta % -correlated weak RMF and putting g=2 we find the transport time τtr\tau_{tr} . This time is 2 times smaller than that for spinless particles.Comment: 9 pages, no figure

    Anderson transition of three dimensional phonon modes

    Full text link
    Anderson transition of the phonon modes is studied numerically. The critical exponent for the divergence of the localization length is estimated using the transfer matrix method, and the statistics of the modes is analyzed. The latter is shown to be in excellent agreement with the energy level statistics of the disrodered electron system belonging to the orthogonal universality class.Comment: 2 pages and another page for 3 figures, J. Phys. Soc. Japa

    Comment on ``Critical Behavior in Disordered Quantum Systems Modified by Broken Time--Reversal Symmetry''

    Full text link
    In a recent Letter [Phys. Rev. Lett. 80, 1003 (1998)] Hussein and Pato employed the maximum entropy principle (MEP) in order to derive interpolating ensembles between any pair of universality classes in random matrix theory. They apply their formalism also to the transition from random matrix to Poisson statistics of spectra that is observed for the case of the Anderson-type metal-insulator transition. We point out the problems with the latter procedure.Comment: 1 page in PS, to appear in PRL Sept. 2

    Anomalous diffusion at the Anderson transitions

    Full text link
    Diffusion of electrons in three dimensional disordered systems is investigated numerically for all the three universality classes, namely, orthogonal, unitary and symplectic ensembles. The second moment of the wave packet at the Anderson transition is shown to behave as ∼ta(a≈2/3)\sim t^a (a\approx 2/3). From the temporal autocorrelation function C(t)C(t), the fractal dimension D2D_2 is deduced, which is almost half the value of space dimension for all the universality classes.Comment: Revtex, 2 figures, to appear in J. Phys. Soc. Jpn.(1997) Fe

    One-parameter Superscaling at the Metal-Insulator Transition in Three Dimensions

    Full text link
    Based on the spectral statistics obtained in numerical simulations on three dimensional disordered systems within the tight--binding approximation, a new superuniversal scaling relation is presented that allows us to collapse data for the orthogonal, unitary and symplectic symmetry (β=1,2,4\beta=1,2,4) onto a single scaling curve. This relation provides a strong evidence for one-parameter scaling existing in these systems which exhibit a second order phase transition. As a result a possible one-parameter family of spacing distribution functions, Pg(s)P_g(s), is given for each symmetry class β\beta, where gg is the dimensionless conductance.Comment: 4 pages in PS including 3 figure

    Spectral Properties of the Chalker-Coddington Network

    Full text link
    We numerically investigate the spectral statistics of pseudo-energies for the unitary network operator U of the Chalker--Coddington network. The shape of the level spacing distribution as well the scaling of its moments is compared to known results for quantum Hall systems. We also discuss the influence of multifractality on the tail of the spacing distribution.Comment: JPSJ-style, 7 pages, 4 Postscript figures, to be published in J. Phys. Soc. Jp

    Critical statistics in a power-law random banded matrix ensemble

    Full text link
    We investigate the statistical properties of the eigenvalues and eigenvectors in a random matrix ensemble with Hij∼∣i−j∣−μH_{ij}\sim |i-j|^{-\mu}. It is known that this model shows a localization-delocalization transition (LDT) as a function of the parameter μ\mu. The model is critical at μ=1\mu=1 and the eigenstates are multifractals. Based on numerical simulations we demonstrate that the spectral statistics at criticality differs from semi-Poisson statistics which is expected to be a general feature of systems exhibiting a LDT or `weak chaos'.Comment: 4 pages in PS including 5 figure

    Metal-insulator transitions in anisotropic 2d systems

    Full text link
    Several phenomena related to the critical behaviour of non-interacting electrons in a disordered 2d tight-binding system with a magnetic field are studied. Localization lengths, critical exponents and density of states are computed using transfer matrix techniques. Scaling functions of isotropic systems are recovered once the dimension of the system in each direction is chosen proportional to the localization length. It is also found that the critical point is independent of the propagation direction, and that the critical exponents for the localization length for both propagating directions are equal to that of the isotropic system (approximately 7/3). We also calculate the critical value of the scaling function for both the isotropic and the anisotropic system. It is found that the isotropic value equals the geometric mean of the two anisotropic values. Detailed numerical studies of the density of states for the isotropic system reveals that for an appreciable amount of disorder the critical energy is off the band center.Comment: 6 pages RevTeX, 6 figures included, submitted to Physical Review

    Generation of 10-m-lengthscale plasma columns by resonant and off-resonant laser pulses

    Full text link
    Creating extended, highly homogeneous plasma columns like that required by plasma wakefield accelerators can be a challenge. We study the propagation of ultra-short, TW power ionizing laser pulses in a 10-meter-long rubidium vapor and the plasma columns they create. We perform experiments and numerical simulations for pulses with 780 nm central wavelength, which is resonant with the D2_2 transition from the ground state of rubidium atoms, as well as for pulses with 810 nm central wavelength, some distance from resonances. We measure transmitted energy and transverse width of the pulse and use schlieren imaging to probe the plasma column in the vapor close to the end of the vapor source. We find, that resonant pulses are more confined in a transverse direction by the interaction than off-resonant pulses are and that the plasma channels they create are more sharply bounded. Off-resonant pulses leave a wider layer of partially ionized atoms and thus lose more energy per unit propagation distance. Using experimental data, we estimate the energy required to generate a 20-meter-long plasma column and conclude that resonant pulses are much more suitable for creating a long, homogeneous plasma.Comment: 12 pages, 14 figure

    Magnetic Field Effect for Two Electrons in a Two Dimensional Random Potential

    Full text link
    We study the problem of two particles with Coulomb repulsion in a two-dimensional disordered potential in the presence of a magnetic field. For the regime, when without interaction all states are well localized, it is shown that above a critical excitation energy electron pairs become delocalized by interaction. The transition between the localized and delocalized regimes goes in the same way as the metal-insulator transition at the mobility edge in the three dimensional Anderson model with broken time reversal symmetry.Comment: revtex, 7 pages, 6 figure
    • …
    corecore